Atom

ATOM

sebatang kapur di potong menjadi duansama panjang. setiap bagian dipotong lagi menjadi dua. jika hal itu dilakukan terus-menerus. hasil terakhir yang diperoleh berupa butiran halus dari kapur. menurut anda, apakah butiran tersebut benar-benar bagian terkecil dari sebatang kapur ?

Sejak beberapa abad yang lalu, para ahli berdebat tentang bagian terkecil dari suatu benda. menurut mereka, ada sebuah materi  yang menjadi bagian terkecil dari suatu benda.

Demokritus, seorang ahli filsafat yunani, menanamkan bagian tersebut sebagian atomos. pendapat tersebut mengawali munculnya teori atom dan menimbulkan kontroversi. Ada yang setuju dan ada pula yang tidak setuju. bagaimana perkembangan teori atom ini selanjutnya? benarkah atom adalah bagian terkecil sebuah benda ?

Model Atom Dalton

Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi”. Sedangkan Prouts menyatakan bahwa “Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton mengemukakan pendapatnya tentang atom sebagai berikut:

  1. Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
  2. Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
  3. Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
  4. Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.

Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:

Model Atom Dalton seperti bola pejal

Percobaan Lavosier

sketsa alat percobaan laovosier

Mula-mula tinggi cairan merkuri dalam wadah yang berisi udara adalah A, tetapi setelah beberapa hari merkuri naik ke B dan ketinggian ini tetap. Beda tinggi A dan B menyatakan volume udara yang digunakan oleh merkuri dalam pembentukan bubuk merah (merkuri oksida). Untuk menguji fakta ini, Lavoisier mengumpulkan merkuri oksida, kemudian dipanaskan lagi. Bubuk merah ini akan terurai menjadi cairan merkuri dan sejumlah volume gas (oksigen) yang jumlahnya sama dengan udara yang dibutuhkan dalam percobaan pertama

Percobaan Joseph Pruost

Pada tahun 1799 Proust menemukan bahwa senyawa tembaga karbonat baik yang dihasilkan
melalui sintesis di laboratorium maupun yang diperoleh di alam memiliki susunan yang tetap.

Percobaan
ke-
Sebelum pemanasan (g Mg)
Setelah pemanasan (g MgO)
Perbandingan Mg/MgO
1
0,62
1,02
0,62/1,02 = 0,61
2
0,48
0,79
0,48/0,79 = 0,60
3
0,36
0,60
0,36/0,60 = 0,60

Kelemahan Model Atom Dalton

Kelebihan
Mulai membangkitkan minat terhadap penelitian mengenai model atom

Kelemahan
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.

J.J ThomsonSetelah penemuan proton oleh Goldstein di tahun 1886 dan elektron oleh J.J. Thomson di tahun 1897. Kemudian pada tahun 1898 J.J Thomson mengemukakan model atomnya. Model atom Thomson menyatakan bahwa atom berbentuk bulat dimana muatan listrik positif yang tersebar merata dalam atom dinetralkan oleh elektron-elektron yang bermuatan negatif yang berada di antara muatan positif. 
             J.J Thomson

Model atom Thomson

Model atom Thomson didasarkan pada asumsi bahwa massa elektron lebih kecil dari massa atom, dan elektron merupakan partikel penyusun atom. Karena atom bermuatan netral, maka elektron yang bermuatan negatif akan menetralkan suatu muatan positif dalam atom. Hal ini mendukung keberadaan proton dalam atom.

 

 

Model Atom J.J Thomson

Model atom Thomson diuji oleh penelitian yang dilakukan oleh Philipp Lenard pada tahun 1903, yang mempelajari tentang pengaruh fotolistrik. Ia mengamati perilaku elektron yang menembus lempeng alumunium yang sangat tipis dengan cara memodifikasi tabung sinar katode dan menempatkan lempeng tersebut di dalamnya. Jika model atom Thomson benar, maka akan ada banyak berkas elektron yang dibelokkan setelah menembus lempeng alumunium, hal ini disebabkan elektron telah kehilangan energi yang banyak karena menabrak elektron yang tersebar merata dalam muatan positif atom.

Akan tetapi, ia mengamati bahwa sebagian besar elektron tidak dibelokkan. Hal ini membuktikan bahwa model atom Thomson yang menyatakan bahwa elektron tersebar merata dalam muatan positif atom, adalah tidak benar.

Kelemahan dari teori yang diajukan Dalton diperbaiki oleh JJ. Thomson. Dia memfokuskan pada muatan listrik yang ada dalam sebuah atom. Dengan eksperimen menggunakan sinar kotoda, membuktikan adanya partikel lain yang bermuatan negatif dalam atom dan partikel tersebut adalah elektron. Thomson juga memastikan bahwa atom bersifat netral, sehingga diadalam atom juga terdapat partikel yang bermuatan positif.

Selanjutnya Thomson mengajukan model atom, yang dinyatakan bahwa atom merupakan bola yang bermuatan positif, dan elektron tersebar dipermukaannya, seperti roti ditaburi kismis atau seperti kue onde-onde dimana permukaannya tersebar wijen, lihat Gambar 3.8.

atom thomson

Gambar 3.8. Model atom Thomson, bola pejal bermuatan positif dan elelektron tersebar di permukaannya

Thomson juga menambahkan bahwa atom bersifat netral sehingga jumlah proton dalam bola sama dengan jumlah elektron yang ada di permukaannya.

Atom Rutherford

a)      Rutherford menemukan bukti bahwa dalam atom terdapat inti atom yang bermuatan positif, berukuran lebih kecil daripada ukuran atom tetapi massa atom hampir seluruhnya berasal dari massa intinya.

b)      Atom terdiri dari inti atom yang bermuatan positif dan berada pada pusat atom serta elektron bergerak melintasi inti (seperti planet dalam tata surya).

VIdeo Teori Atom Rutherford   “teori atom rutherford ( video)”

Kelemahan Model Atom Rutherford :

  • Ketidakmampuan untuk menjelaskan mengapa elektron tidak jatuh ke inti atom akibat gaya tarik elektrostatis inti terhadap elektron.
  • Menurut teori Maxwell, jika elektron sebagai partikel bermuatan mengitari inti yang memiliki muatan yang berlawanan maka lintasannya akan berbentuk spiral dan akan kehilangan tenaga/energi dalam bentuk radiasi sehingga akhirnya jatuh ke inti.

TEORI ATOM NEILS BOHR

Di dalam fisika atom, model Bohr adalah model atom yang diperkenalkan oleh Niels Bohr pada 1913 Model ini menggambarkan atom sebagai sebuah inti kecil bermuatan positif yang dikelilingi oleh elektron yang bergerak dalam orbit sirkular mengelilingi inti mirip sistem tata surya, tetapi peran gaya gravitasi digantikan oleh gaya elektrostatik. Model ini adalah pengembangan dari model puding rem(1904), model Saturnian (1904), dan model Rutherford (1911). Karena model Bohr adalah pengembangan dari model Rutherford, banyak sumber mengkombinasikan kedua nama dalam penyebutannya menjadi model Rutherford-Bohr.

Kunci sukses model ini adalah dalam menjelaskan formula Rydberg mengenai garis-garis emisi spektral atom hidrogen; walaupun formula Rydberg sudah dikenal secara eksperimental, tetapi tidak pernah mendapatkan landasan teoretis sebelum model Bohr diperkenalkan. Tidak hanya karena model Bohr menjelaskan alasan untuk struktur formula Rydberg, ia juga memberikan justifikasi hasil empirisnya dalam hal suku-suku konstanta fisika fundamental.

Model Bohr adalah sebuah model primitif mengenai atom hidrogen. Sebagai sebuah teori, model Bohr dapat dianggap sebagai sebuah pendekatan orde pertama dari atom hidrogen menggunakan mekanika kuantum yang lebih umum dan akurat, dan dengan demikian dapat dianggap sebagai model yang telah usang. Namun demikian, karena kesederhanaannya, dan hasil yang tepat untuk sebuah sistem tertentu, model Bohr tetap diajarkan sebagai pengenalan pada mekanika kuantum.

Berdasarkan analisis spektrum atom, Niels Bohr mengajukan model atom sebagai berikut :

  1. Dalam elektron terdapat lintasan-lintasan tertentu tempat elektron dapat mengorbit inti tanpa disertai pemancaran atau menyerap energi. lintasan itu, yang juga disebut kulit atom, adalah orbit berbentuk lingkaran dengan jari-jari tertentu. tiap lintasan ditandai dengan satu bilangan bulat yang disebut bilangan kuantum utama (n), mulai dari 1, 2, 3, 4, dan seterusnya, yang dinyatakan dengan lambang K, L, M, N, dan seterusnya. Lintasan pertama, dengan n = 1, dinamai kulit K, dan seterusnya. makin besar harga n (makin jauh dari inti), makin besar energi elektron yang mengorbit pada kulit itu.
  2. Elektron hanya boleh berada pada lintasan-lintasan yang diperbolehkan (lintasan yang ada), dan tidak boleh berada di antara dua lintasan. lintasan yang akan ditempati oleh elektron bergantung pada energinya. pada keadaan normal (tanpa pengaruh luar), elektron menempati tingkat energi terendah. keadaan seperti itu disebut tingkat dasar (ground state).
  3. elektron dapat berpindah dari satu kulit ke kulit lain disertai pemancaran atau penyerapan sejumlah tertentu energi. perpindahan elektron ke kulit lebih dalam akan disertai penyerapan energi. sebaliknya, perpindahan elektron ke kulit lebih dalam akan disertai pelepasan energ

Sejarah

Di awal abad 20 percobaan oleh Ernest rutherford telah dapat menunjukkan bahwa atom terdiri dari sebentuk awan difus elektron bermuatan negatif mengelilingi inti yang kecil, padat, dan bermuatan positif. Berdasarkan data percobaan ini, sangat wajar jika fisikawan kemudian membayangkan sebuah model sistem keplanetan yang diterapkan pada atom, model Rtherford tahun 1911, dengan elektron-elektron mengorbit inti seperti layaknya planet mengorbit matahari. Namun demikian, model sistem keplanetan untuk atom menemui beberapa kesulitan. Sebagai contoh, hukum mekanika klasik (Newtonian) memprediksi bahwa elektron akan melepas radiasi elektromagnetik ketika sedang mengorbit inti. Karena dalam pelepasan tersebut elektron kehilangan energi, maka lama-kelamaan akan jatuh secara spiral menuju ke inti. Ketika ini terjadi, frekuensi radiasi elektromagnetik yang dipancarkan akan berubah. Namun percobaan pada akhir abad 19 menunjukkan bahwa loncatan bunga api listrik yang dilalukan dalam suatu gas bertekanan rendah di dalam sebuah tabung hampa akan membuat atom-atom gas memancarkan cahaya (yang berarti radiasi elektromagnetik) dalam frekuensi-frekuensi tetap yang diskret.

Untuk mengatasi hal ini dan kesulitan-kesulitan lainnya dalam menjelaskan gerak elektron di dalam atom, Niels Bohr mengusulkan, pada 1913 dua gagasan kunci adalah:

  1. Elektron-elektron bergerak di dalam orbit-orbit dan memiliki momenta yang terkuantisasi, dan dengan demikian energi yang terkuantisasi. Ini berarti tidak setiap orbit, melainkan hanya beberapa orbit spesifik yang dimungkinkan ada yang berada pada jarak yang spesifik dari inti.
  2. Elektron-elektron tidak akan kehilangan energi secara perlahan-lahan sebagaimana mereka bergerak di dalam orbit, melainkan akan tetap stabil di dalam sebuah orbit yang tidak meluruh.

Arti penting model ini terletak pada pernyataan bahwa hukum mekanika klasik tidak berlaku pada gerak elektron di sekitar inti. Bohr mengusulkan bahwa satu bentuk mekanika baru, atau mekanika kuantum, menggambarkan gerak elektron di sekitar inti. Namun demikian, model elektron yang bergerak dalam orbit yang terkuantisasi mengelilingi inti ini kemudian digantikan oleh model gerak elektron yang lebih akurat sekitar sepuluh tahun kemudian oleh fisikawan Austria Erwin Schrodinger dan fisikawan Jerman Werner Heisenberg

Point-point penting lainnya adalah:

  1. Ketika sebuah elektron meloncat dari satu orbit ke orbit lainnya, perbedaan energi dibawa (atau dipasok) oleh sebuah kuantum tunggal cahaya (disebut sebagai foton) yang memiliki energi sama dengan perbedaan energi antara kedua orbit.
  2. Orbit-orbit yang diperkenankan bergantung pada harga-harga terkuantisasi (diskret) dari momentum sudut orbital, L menurut persamaan
    dimana n = 1,2,3,… dan disebut sebagai bilangan kuantum utama, dan h adalah konstanta Plank.

Point (2) menyatakan bahwa harga terendah dari n adalah 1. Ini berhubungan dengan radius terkecil yang mungkin yaitu 0.0529 nm. Radius ini dikenal sebagai radius Bohr. Sekali elektron berada pada orbit ini, dia tidak akan mungkin bertambah lebih dekat lagi ke proton.

Kelemahan Model Atom Niels Bohr :

  1. Hanya dapat menerangkan spektrum dari atom atau ion yang mengandung satu elektron dan tidak sesuai dengan spektrum atom atau ion yang berelektron banyak.
  2. Tidak mampu menerangkan bahwa atom dapat membentuk molekul melalui ikatan kimia.

5).  Model Atom Modern

Dikembangkan berdasarkan teori mekanika kuantum yang disebut mekanika gelombang; diprakarsai oleh 3 ahli :

a)      Louis Victor de Broglie

Menyatakan bahwa materi mempunyai dualisme sifat yaitu sebagai materi dan sebagai gelombang.

b)      Werner Heisenberg

Mengemukakan prinsip ketidakpastian untuk materi yang bersifat sebagai partikel dan gelombang. Jarak atau letak elektron-elektron yang mengelilingi inti hanya dapat ditentukan dengan kemungkinan – kemungkinan saja.

c)      Erwin Schrodinger (menyempurnakan model Atom Bohr)

Berhasil menyusun persamaan gelombang untuk elektron dengan menggunakan prinsip mekanika gelombang. Elektron-elektron yang mengelilingi inti terdapat di dalam suatu orbital yaitu daerah 3 dimensi di sekitar inti dimana elektron dengan energi tertentu dapat ditemukan dengan kemungkinan terbesar.

Orbit Orbital

Gambar Perbedaan antara orbit dan orbital untuk elektron

  • Orbital digambarkan sebagai awan elektron yaitu : bentuk-bentuk ruang dimana suatu elektron kemungkinan ditemukan.
  • Semakin rapat awan elektron maka semakin besar kemungkinan elektron ditemukan dan sebaliknya.

PARTIKEL DASAR PENYUSUN ATOM

(Pelajari Buku Paket Kimia 1A halaman 88 sampai 96!)

Partikel Notasi Massa Muatan
Sesungguhnya Relatif thd proton Sesungguhnya Relatif thd proton
Proton 1,67 x 10-24 g 1 sma 1,6 x 10-19 C +1
Neutron 1,67 x 10-24 g 1 sma 0 0
Elektron 9,11 x 10-28 g sma -1,6 x 10-19 C -1

Catatan : massa partikel dasar dinyatakan dalam satuan massa atom ( sma ).

1 sma = 1,66 x 10-24 gram

NOMOR ATOM

  • Menyatakan jumlah proton dalam atom.
  • Untuk atom netral, jumlah proton = jumlah elektron (nomor atom juga menyatakan jumlah elektron).
  • Diberi simbol huruf Z
    • Atom yang melepaskan elektron berubah menjadi ion positif, sebaliknya yang menerima elektron berubah menjadi ion negatif.

Contoh : 19K

Artinya …………..

NOMOR MASSA

v  Menunjukkan jumlah proton dan neutron dalam inti atom.

v  Proton dan neutron sebagai partikel penyusun inti atom disebut Nukleon.

v  Jumlah nukleon dalam atom suatu unsur dinyatakan sebagai Nomor Massa (diberi lambang huruf A), sehingga :

A  =  nomor massa

=  jumlah proton ( p ) + jumlah neutron ( n )

A   =  p + n = Z + n

v  Penulisan atom tunggal dilengkapi dengan nomor atom di sebelah kiri bawah dan nomor massa di sebelah kiri atas dari lambang atom tersebut. Notasi semacam ini disebut dengan Nuklida.

Keterangan :

X = lambang atom             A = nomor massa

Z  = nomor atom                Contoh :

SUSUNAN ION

v  Suatu atom dapat kehilangan/melepaskan elektron atau mendapat/menerima elektron tambahan.

v  Atom yang kehilangan/melepaskan elektron, akan menjadi ion positif (kation).

v  Atom yang mendapat/menerima elektron, akan menjadi ion negatif (anion).

v  Dalam suatu Ion, yang berubah hanyalah jumlah elektron saja, sedangkan jumlah proton dan neutronnya tetap.

Contoh :

Spesi Proton Elektron Neutron
Atom Na 11 11 12
Ion 11 10 12
Ion 11 12 12

Rumus umum untuk menghitung jumlah proton, neutron dan elektron :

1).  Untuk nuklida atom netral :

:    p = Z

e = Z

n = (A-Z)

2).  Untuk nuklida kation :

:    p = Z

e = Z – (+y)

n = (A-Z)

3).  Untuk nuklida anion :

:    p = Z

e = Z – (-y)

n = (A-Z)

ISOTOP, ISOBAR DAN ISOTON

1).  ISOTOP

Adalah atom-atom dari unsur yang sama (mempunyai nomor atom yang sama) tetapi berbeda nomor massanya.

Contoh : ;   ;

2).  ISOBAR

Adalah atom-atom dari unsur yang berbeda (mempunyai nomor atom berbeda) tetapi mempunyai nomor massa yang sama.

Contoh : dengan

3).  ISOTON

Adalah atom-atom dari unsur yang berbeda (mempunyai nomor atom berbeda) tetapi mempunyai jumlah neutron yang sama.

Contoh : dengan

KONFIGURASI ELEKTRON

(Pelajari Buku Paket Kimia 1A halaman 83 sampai 88!)

ü  Persebaran elektron dalam kulit-kulit atomnya disebut konfigurasi.

ü  Kulit atom yang pertama (yang paling dekat dengan inti) diberi lambang K, kulit ke-2 diberi lambang L dst.

ü  Jumlah maksimum elektron pada setiap kulit memenuhi rumus 2n2 (n = nomor kulit).

Contoh :

Kulit K (n = 1) maksimum 2 x 12 = 2 elektron

Kulit L (n = 2) maksimum 2 x 22 = 8 elektron

Kulit M (n = 3) maksimum 2 x 32 = 18 elektron

Kulit N (n = 4) maksimum 2 x 42 = 32 elektron

Kulit O (n = 5) maksimum 2 x 52 = 50 elektron

Catatan :

Meskipun kulit O, P dan Q dapat menampung lebih dari 32 elektron, namun kenyataannya kulit-kulit tersebut belum pernah terisi penuh.

Langkah-Langkah Penulisan Konfigurasi Elektron :

  1. Kulit-kulit diisi mulai dari kulit K, kemudian L dst.
  2. Khusus untuk golongan utama (golongan A) :

Jumlah kulit = nomor periode

Jumlah elektron valensi = nomor golongan

  1. Jumlah maksimum elektron pada kulit terluar (elektron valensi) adalah 8.
  • Elektron valensi berperan pada pembentukan ikatan antar atom dalam membentuk suatu senyawa.
  • Sifat kimia suatu unsur ditentukan juga oleh elektron valensinya. Oleh karena itu, unsur-unsur yang memiliki elektron valensi sama, akan memiliki sifat kimia yang mirip.

Contoh :

Unsur Nomor Atom K L M N O
He 2 2
Li 3 2 1
Ar 18 2 8 8
Ca 20 2 8 8 2
Sr 38 2 8 18 8 2

Perhatikan Tabel 3.3 Buku Paket Kimia 1A halaman 85!

Catatan :

  • Konfigurasi elektron untuk unsur-unsur golongan B (golongan transisi) sedikit berbeda dari golongan A (golongan utama).
  • Elektron tambahan tidak mengisi kulit terluar, tetapi mengisi kulit ke-2 terluar; sedemikian sehingga kulit ke-2 terluar itu berisi 18 elektron.

Contoh :

Unsur Nomor Atom K L M N
Sc 21 2 8 9 2
Ti 22 2 8 10 2
Mn 25 2 8 13 2
Zn 30 2 8 18 2

Soal-Soal Latihan :

Kerjakan Latihan 3.3 dari Buku Paket halaman 88 nomor 1 – nomor 5!

MASSA ATOM RELATIF (Ar)

(Pelajari Buku Paket Kimia 1A halaman 38 sampai 39 dan halaman 100 sampai 103!)

  • Adalah perbandingan massa antar atom yang 1 terhadap atom yang lainnya.
  • Pada umumnya, unsur terdiri dari beberapa isotop maka pada penetapan massa atom relatif (Ar) digunakan massa rata-rata dari isotop-isotopnya.
  • Menurut IUPAC, sebagai pembanding digunakan atom C-12 yaitu  dari massa 1 atom C-12; sehingga dirumuskan :

Ar unsur X  =   ……………………(1)

  • Karena : massa 1 atom C-12 = 1 sma ; maka :

Ar unsur X  =   ……………………(2)

MASSA MOLEKUL RELATIF (Mr)

  • Adalah perbandingan massa antara suatu molekul dengan suatu standar.
  • Besarnya massa molekul relatif (Mr) suatu zat = jumlah massa atom relatif (Ar) dari atom-atom penyusun molekul zat tersebut.
  • Khusus untuk senyawa ion digunakan istilah Massa Rumus Relatif (Mr) karena senyawa ion tidak terdiri atas molekul.
  • Mr   = S Ar

Contoh :

Diketahui : massa atom relatif (Ar) H = 1; C = 12; N = 14 dan O = 16.

Berapa massa molekul relatif (Mr) dari CO(NH2)2

Jawab :

Mr CO(NH2)2 = (1 x Ar C) + (1 x Ar O) + (2 x Ar N) + (4 x Ar H)

= (1 x 12) + (1 x 16) + (2 x 14) + (4 x 1)

= 60

  1. B. PERKEMBANGAN SISTEM PERIODIK UNSUR

(Pelajari Buku Paket Kimia 1A halaman 72 sampai 82!)

1).  Hukum Triade Dobereiner

  • Dikemukakan oleh Johan Wolfgang Dobereiner (Jerman).
  • Unsur-unsur dikelompokkan ke dalam kelompok tiga unsur yang disebut Triade.
  • Dasarnya : kemiripan sifat fisika dan kimia dari unsur-unsur tersebut.

Jenis Triade :

  1. Triade Litium (Li), Natrium (Na) dan Kalium (K)
Unsur Massa Atom Wujud
Li 6,94 Padat
Na 22,99 Padat
K 39,10 Padat

Massa Atom Na (Ar Na) =  = 23,02

  1. Triade Kalsium (Ca), Stronsium (Sr) dan Barium (Ba)
  2. Triade Klor (Cl), Brom (Br) dan Iod (I)

2).  Hukum Oktaf Newlands

v  Dikemukakan oleh John Newlands (Inggris).

v  Unsur-unsur dikelompokkan berdasarkan kenaikan massa atom relatifnya (Ar).

v  Unsur ke-8 memiliki sifat kimia mirip dengan unsur pertama; unsur ke-9 memiliki sifat yang mirip dengan unsur ke-2 dst.

v  Sifat-sifat unsur yang ditemukan berkala atau periodik setelah 8 unsur disebut Hukum Oktaf.

H Li Be B C N O
F Na Mg Al Si P S
Cl K Ca Cr Ti Mn Fe

Berdasarkan Daftar Oktaf Newlands di atas; unsur H, F dan Cl mempunyai kemiripan sifat.

3).  Sistem Periodik Mendeleev (Sistem Periodik Pendek)

ü  Dua ahli kimia, Lothar Meyer (Jerman) dan Dmitri Ivanovich Mendeleev (Rusia) berdasarkan pada prinsip dari Newlands, melakukan penggolongan unsur.

ü  Lothar Meyer lebih mengutamakan sifat-sifat kimia unsur sedangkan Mendeleev lebih mengutamakan kenaikan massa atom.

ü  Menurut Mendeleev : sifat-sifat unsur adalah fungsi periodik dari massa atom relatifnya. Artinya : jika unsur-unsur disusun menurut kenaikan massa atom relatifnya, maka sifat tertentu akan berulang secara periodik.

ü  Unsur-unsur yang memiliki sifat-sifat serupa ditempatkan pada satu lajur tegak, disebut Golongan.

ü  Sedangkan lajur horizontal, untuk unsur-unsur berdasarkan pada kenaikan massa atom relatifnya dan disebut Periode.

4).  Sistem Periodik Modern (Sistem Periodik Panjang)

  • Dikemukakan oleh Henry G Moseley, yang berpendapat bahwa sifat-sifat unsur merupakan fungsi periodik dari nomor atomnya.
  • Artinya : sifat dasar suatu unsur ditentukan oleh nomor atomnya bukan oleh massa atom relatifnya (Ar).
  1. C. PERIODE DAN GOLONGAN DALAM SPU MODERN

1).  Periode

  • Adalah lajur-lajur horizontal pada tabel periodik.
  • SPU Modern terdiri atas 7 periode. Tiap-tiap periode menyatakan jumlah/banyaknya kulit atom unsur-unsur yang menempati periode-periode tersebut.
Nomor Periode = Jumlah Kulit Atom

Jadi :

  • Unsur-unsur yang memiliki 1 kulit (kulit K saja) terletak pada periode 1 (baris 1), unsur-unsur yang memiliki 2 kulit (kulit K dan L) terletak pada periode ke-2 dst.

Contoh :

9F        : 2 , 7 periode ke-2

12Mg    : 2 , 8 , 2 periode ke-3

31Ga     : 2 , 8 , 18 , 3 periode ke-4

Catatan :

a)      Periode 1, 2 dan 3 disebut periode pendek karena berisi relatif sedikit unsur.

b)      Periode 4 dan seterusnya disebut periode panjang.

c)      Periode 7 disebut periode belum lengkap karena belum sampai ke golongan VIII A.

d)      Untuk mengetahui nomor periode suatu unsur berdasarkan nomor atomnya, Anda hanya perlu mengetahui nomor atom unsur yang memulai setiap periode.

2).  Golongan

  • Sistem periodik terdiri atas 18 kolom vertikal yang terbagi menjadi 8 golongan utama (golongan A) dan 8 golongan transisi (golongan B).
  • Unsur-unsur yang mempunyai elektron valensi sama ditempatkan pada golongan yang sama.
  • Untuk unsur-unsur golongan A sesuai dengan letaknya dalam sistem periodik :
Nomor Golongan = Jumlah Elektron Valensi
  • Unsur-unsur golongan A mempunyai nama lain yaitu :
  1. Golongan IA             = golongan Alkali
  2. Golongan IIA      = golongan Alkali Tanah
  3. Golongan IIIA    = golongan Boron
  4. Golongan IVA    = golongan Karbon
  5. Golongan VA     = golongan Nitrogen
  6. Golongan VIA    = golongan Oksigen
  7. Golongan VIIA   = golongan Halida / Halogen
  8. Golongan VIIIA = golongan Gas Mulia
  1. D. SIFAT-SIFAT PERIODIK UNSUR

Meliputi :

1).  Jari-Jari Atom

  • Adalah jarak dari inti atom sampai ke elektron di kulit terluar.
  • Besarnya jari-jari atom dipengaruhi oleh besarnya nomor atom unsur tersebut.
  • Semakin besar nomor atom unsur-unsur segolongan, semakin banyak pula jumlah kulit elektronnya, sehingga semakin besar pula jari-jari atomnya.

Jadi : dalam satu golongan (dari atas ke bawah), jari-jari atomnya semakin besar.

  • Dalam satu periode (dari kiri ke kanan), nomor atomnya bertambah yang berarti semakin bertambahnya muatan inti, sedangkan jumlah kulit elektronnya tetap. Akibatnya tarikan inti terhadap elektron terluar makin besar pula, sehingga menyebabkan semakin kecilnya jari-jari atom.

Jadi : dalam satu periode (dari kiri ke kanan), jari-jari atomnya semakin kecil.

2).  Energi Ionisasi

ü  Adalah energi minimum yang diperlukan atom netral dalam bentuk gas untuk melepaskan satu elektron membentuk ion bermuatan +1.

ü  Jika atom tersebut melepaskan elektronnya yang ke-2 maka akan diperlukan energi yang lebih besar (disebut energi ionisasi kedua), dst.

EI 1< EI 2 < EI 3 dst

ü  Dalam satu golongan (dari atas ke bawah), EI semakin kecil karena jari-jari atom bertambah sehingga gaya tarik inti terhadap elektron terluar semakin kecil. Akibatnya elektron terluar semakin mudah untuk dilepaskan.

ü  Dalam satu periode (dari kiri ke kanan), EI semakin besar karena jari-jari atom semakin kecil sehingga gaya tarik inti terhadap elektron terluar semakin besar/kuat. Akibatnya elektron terluar semakin sulit untuk dilepaskan.

3). Afinitas Elektron

  • Adalah energi yang dilepaskan atau diserap oleh atom netral dalam bentuk gas apabila menerima sebuah elektron untuk membentuk ion negatif.
  • Semakin negatif harga afinitas elektron, semakin mudah atom tersebut menerima/menarik elektron dan semakin reaktif pula unsurnya.
  • Afinitas elektron bukanlah kebalikan dari energi ionisasi.
  • Dalam satu golongan (dari atas ke bawah), harga afinitas elektronnya semakin kecil.
  • Dalam satu periode (dari kiri ke kanan), harga afinitas elektronnya semakin besar.
  • Unsur golongan utama memiliki afinitas elektron bertanda negatif, kecuali golongan IIA dan VIIIA.
  • Afinitas elektron terbesar dimiliki golongan VIIA.

4).  Keelektronegatifan

  • Adalah kemampuan suatu unsur untuk menarik elektron dalam molekul suatu senyawa (dalam ikatannya).
  • Diukur dengan menggunakan skala Pauling yang besarnya antara 0,7 (keelektronegatifan Cs) sampai 4 (keelektronegatifan F).
  • Unsur yang mempunyai harga keelektronegatifan besar, cenderung menerima elektron dan akan membentuk ion negatif.
  • Unsur yang mempunyai harga keelektronegatifan kecil, cenderung melepaskan elektron dan akan membentuk ion positif.
  • Dalam satu golongan (dari atas ke bawah), harga keelektronegatifan semakin kecil.
  • Dalam satu periode (dari kiri ke kanan), harga keelektronegatifan semakin besar.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: